TESTICULAR TISSUE FREEZING: IMPACT OF THE FREEZING PROCEDURE AND THE TREATMENT RECEIVED ON THE QUALITY OF THE TISSUE AFTER THAWING

Rives, Aurélie; Liard, Agnès; Mitchell, Valérie; Bubenheim, Michael; Mirallié, Sophie; Giscard d’Estaing, Sandrine; Roux, Christophe; Benhaim, Annie; Brugnon, Florence; Daudin, Myriam; Schneider, Pascale; Bironneau, Amandine; Rives, Nathalie

1EA 4308 Gametogenesis and Gamete Quality Reproductive Biology Laboratory Rouen University Hospital, 2Chirurgie infantile, CHU de Rouen Normandie, 3EA 4308 Gametogenesis and gamete Quality Laboratoire de Spermiologie-CECOS, CHRU de Lille 2, Université de Lille 2, 4DRCI CHU de Rouen Normandie, 5CECOS Nantes CHU de Nantes, 6CECOS de Lyon CHU de Lyon, 7Laboratoire de Biologie de la Reproduction CHU de Besançon, 8Laboratoire de Biologie de la Reproduction CECOS de Caen CHU de Caen, 9CECOS Auvergne CHU de Clermont Ferrand, 10CECOS Toulouse CHU de Toulouse, 11IHOP CHU de Rouen, 12EA 4308 Gametogenesis and Gamete Quality Reproductive Biology Laboratory Rouen University Hospital, 13EA 4308 "Gametogenesis and Gamet Quality" Reproductive Biology Laboratory Rouen University Hospital

Abstract Body

Introduction. In pre-pubertal boys with cancer, infertility caused by treatments has been ignored for a long time, surgical removal of testicular tissue and its freezing is one of the possible procedures to preserve their fertility. The aim of this study was to determine the impact of (i) the freezing procedure on the semiferous tubule architecture and (i) the pathology or the cancer treatment received prior to testicular tissue cryopreservation on the number of spermatogonia present in seminiferous tubules.

Materials and methods. The study population included boys with cancer aged between 1 and 16 years before conditioning treatment for hematopoietic stem cell transplantation within the context of cancer and after receiving low gonadotoxic treatment. Histological analysis was performed on testicular biopsies before and after freezing. Immuno-histological markers were used to assess the number of spermatogonia (MAGE-A4) and their proliferative ability (PCNA). The histological changes induced by the freezing procedure, the pathology or the associated treatments were evaluated. Results. A total of 91 patients (mean age : 7±4 years) were included with 46% of them with acute leukemia, 48% with solid tumor and 6% with lymphoma. Testicular tissue alteration score increased after thawing (p <0.0001), but remained less than 1, in agreement with a good preservation of the seminiferous tubule architecture. The number of intra-tubular spermatogonia (p = 0.6568) and their proliferative ability (p = 0.7819) did not vary after thawing. We found a decrease in the number of intra-tubular spermatogonia after gonadotoxic treatment including alkylating agents (p = 0.0353) and according to their cumulative dose. Conclusion. Alkylating agents have a detrimental systematic effect on spermatogonia number. It would seem advisable to propose testicular tissue preservation, as soon as the chemotherapy protocol includes alkylating agents with a Cyclophosphamide Equivalent Dose > 4000 mg/m^2.